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Abstract. We discuss three finite fermion systems in comparison: nuclei, metal clusters, and droplets of
liquid 3He. A principle sorting in “natural units” of energy and length scales is given. We address the
theoretical description in terms of self-consistent mean-field theories and their effective energy-density
functionals. We look at the interplay of the different time scales from the various constituents of either
system. Finally, we discuss the prospects of more detailed experimental analyses for the case of metal
clusters, in particular in the non-linear domain where truly dynamical behaviors are expected.

PACS. 25.70.-z Low and intermediate energy heavy-ion reactions – 36.40.-c Atomic and molecular clusters
– 67.55.-s Normal phase of liquid 3He

1 Introduction

Finite fermion systems are droplets of Fermi liquid. Typ-
ical examples are atomic nuclei, 3He droplets, and metal
clusters. Fermi liquids constitute one of the basic states of
matter [1]. They are highly correlated systems which, how-
ever, never freeze out to a crystalline state. They have a
well-defined saturation density with low (nuclei and metal
clusters) or moderate (liquid 3He) compressibility. The fi-
nite drops thus share several key features: scaling of radius
withN1/3, shell effects (magic numbers, Jahn-Teller defor-
mation, for clusters see [2]), pronounced resonance excita-
tions (giant resonances, plasmons [3]), and fusion/fission
[4]. The strong correlations can hardly be dealt with in
detail. Effective energy-density functionals are employed
for self-consistent calculations of ground state and dynam-
ics, see e.g. [5] for the electrons in clusters, [6] for nuclei,
and [7] for 3He droplets. This short list of basic properties
shows that finite fermion systems have much in common.
On the other side, there are several noteworthy differences,
e.g., concerning composition or relation of time scales. It
is thus most interesting to discuss these systems in com-
parison. It is the aim of this contribution to provide such a
discussion in due brevity. Thereby, we will concentrate on
the energetic dynamical aspects and refer to [8] for struc-
ture and the low-energy domain. We will first compare
the three systems concerning typical scales (length, time,
energy), construction of effective energy-density function-
als, and available data. In the last section, we will discuss
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briefly observables from non-linear dynamics for the par-
ticular example of metal clusters. A much more extensive
discussion of practically all aspects of cluster dynamics
can be found in [9].

2 Nuclei, 3He droplets and metal clusters

Nuclei, helium droplets and the electron cloud of metal
clusters are dense fermion systems with strong Pauli cor-
relations. For a more quantitative discussion, let us briefly
recall a few key characteristics of nuclei, metal clusters
and helium droplets, concerning, in particular, dominant
interactions, sizes, structure and dynamics. These charac-
teristics are briefly sketched in table 1. In metal clusters,
the Coulomb interaction plays an important role. The re-
pulsive interactions between electrons are compensated by
the attraction to ions. In a neutral cluster, it is finally the
electronic exchange and correlation part of the interac-
tion which provides most of the binding. In nuclei, the
binding is dominated by the short-range nuclear inter-
action providing more than enough binding to overrule
the repulsive Coulomb interaction which grows with the
number of protons. In helium droplets, the interaction,
originally Coulombic, reduces to a mere (extremely faint)
interaction of van der Waals form between atoms (struc-
tureless at this energy scale), leading to extremely fragile
structures. All three systems furthermore exhibit a “sat-
urating” behavior. Their radii scale with the power 1/3
of the size of the system. The proportionality factor is
the Wigner-Seitz radius rs, often denoted as r0 in case of
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Table 1. Gross characteristics of nuclei, metal clusters and helium droplets. One successively considers the constituents (all
fermions but for the ions in clusters), the interactions at play, the radii of systems of sizes A (nuclei) and N (clusters, helium
droplets), the typical distance between constituents, the typical mean free path and de Broglie wavelength as estimated from a
Fermi-gas picture of the ground state. Distances are expressed in terms of r0 for nuclei and rs for clusters and helium droplets.
The parameter r0 is the parameter entering the systematics of nuclear radii; the parameter rs is the Wigner-Seitz radius of the
material constituting the metal clusters or the helium droplets.

Nuclei Clusters Helium

Constituents N Neutrons N Electrons N 3He atoms
Z Protons Nions Ions (2p, 1n, 2e)

Interaction Short-range (nuclear) Long-range (Coulomb) Short-range
+ Long-range (Coulomb) van der Waals

Size N+Z = A ≤ 300 3 ≤ N ≤ 105–7 30 ≤ N

Radius R ∼ r0A
1/3 R ∼ rsN

1/3 R ' rsN
1/3

rs ≡ r0 ∼ 1.2 fm rs ∼ 0.1–0.3 nm r0 ∼ 0.25 nm

Distance constituents d ∼ 1.5–2r0,s

Mean free path λ ∼ R

de Broglie wavelength λB ∼ πr0,s

Fermi energy εF 40 MeV 1.4–12 eV 5 K

nuclei. This means that each fermion occupies the same
volume given by (4/3)πr3

s . This also implies that the av-
erage density of these systems is ρ ∼ 3/(4πr3

s) indepen-
dent of the system size. The parameters r0, rs thus play
a key role in fixing the characteristic scales in these sys-
tems. One can for example estimate the typical distance
between constituents, which amounts to about 1.5–2 rs.
One can also evaluate the mean free path. In all cases
it turns out to be of the order of magnitude of the actual
size of the system, so that one can adopt the view that the
fermions evolve nearly independent of each other, which
motivates a mean-field approach. Taking for the sake of
simplicity a Fermi-gas picture (which serves reasonably
well as a first approximation) one can also introduce an
energy scale in terms of rs through the Fermi momentum
kF = (3π2ρ)1/3 = (9π/4)1/3r−1

s from which one can de-
duce a typical Fermi energy εF = (h̄2/2m)k2

F and Fermi
velocity vF = h̄kF/m (with m = mn,me,mHe). This, by
the way, also provides a simple estimate of the de Broglie
wavelength in the ground state λB ∼ 2π/kF ∼ πrs, which
confirms the essentially quantal nature of these systems.

A comparison of mean fields is presented in fig. 1 for
the cluster Na40, the nucleus

78Sr (with 40 neutrons) and a
helium droplet with 40 3He atoms. The results are plotted
in natural units (see figure caption) for making the sys-
tems comparable. The comparison is quite enlightening.
First one notes that all three systems fit into one figure,
i.e. have about the same scales when expressed in natural
units. Moreover, they exhibit the same spatial extension,
directly connected to the “saturation scale” introduced
by rs. At second glance, one also spots differences, in the
depth of the potential wells and in the asymptotic be-
haviors. The cluster and nucleus share a comparably deep
potential while the helium droplet exhibits a much more
shallow potential well reflecting the faintness of the in-
teraction between two He atoms. On the other hand, the
helium droplet and the nucleus share the same asymp-

Fig. 1. The mean-field potentials for a Na cluster, a nucleus
and a helium droplet, for 40 particles (the results are only
shown for the neutron part in the nuclear case). Natural units
are used: lengths in units of rs and potentials in units of εF.

totic behavior characteristic of a system dominated by a
relatively short-range interaction, while the cluster case
exhibits a typical long-range Coulomb behavior. All in all
the comparison nevertheless shows the overall similarity
between the various systems, up to details.

3 Mean field: a possible common theory

The free nucleon-nucleon interaction is known to be
strongly repulsive at short range [10]. This makes a mean-
field theory a priori questionable. But the strong Pauli
correlations in nuclei significantly suppress low-energy
scattering, which renormalizes, in a nuclear medium, the
interaction to an effective one. The short-distance repul-
sion is thus highly suppressed and the effective nucleon-
nucleon interaction smooth enough to justify a mean-field
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Table 2. One-body Hamiltonian used in mean-field calculations in nuclei (Skyrme-like interaction), metal clusters (DFT
LDA) and helium droplets (DFT). In nuclei the density ρ represents the neutron and/or proton density, the latter entering the
Coulomb interaction alone (ρp). In clusters the density is the electronic one while in helium it is the density of helium atoms.
In the case of cluster electrons an important contribution comes from the exchange correlation potential Uxc[ρ] which can be
treated in the simplest LDA approximation. The external potential Uext(r, t) typically refers to the fields as generated by ions
or a possible external field (laser, bypassing ion, . . . ). In the case of helium droplets one has to introduce an effective mass m∗

as indicated, which again depends on the density. The same is true in principle for the nuclear case but the effective mass is
much closer to the bare mass (about 20%) than in the helium case (factor 3 typically).

Nuclei h[%] = −∇ h̄
m∗(r)

∇+ t0%+ t3%
1+σ + t12(∇%)

2 +
∫ %p(r

′)

|r−r
′|
dr′ + . . .

h̄2

2m∗ = h̄2

2m
+ α%

Clusters h[%] = − h̄2

2m
∆+

∫

%(r′)
|r−r

′|
dr′ + Uxc[%] + Uext(r, t)

Helium h[%] = −∇ h̄2

m∗(r)
∇+

∫

Veff(r− r′)%(r′)dr′ +A%1+γ + . . .

h̄2

2m∗ = h̄2

2m
+ α%+ β%2

picture [10]. The so-called Skyrme interactions, which in-
tegrate in an effective way these Pauli correlation effects
on a basically zero-range bare interaction, have been a
standard microscopic tool for decades, because of their
simplicity and because of the many successes they have
allowed, at least for stability valley nuclei, for a recent
review, see [6]. As can be seen from table 2 the Skyrme
interaction appears as a density functional, mostly local,
non-locality being usually assumed in terms of a gradient
expansion.

A somewhat similar reasoning applies to metal clus-
ters. The general atomic problem is indeed singular (due
to the point charge of the atomic nucleus), but a limited
number of valence electrons actually take part in the bind-
ing of molecular systems or clusters. This is especially true
in the case of simple metals as the valence shell is well
separated from core levels and usually little bound. Va-
lence electrons can thus easily be delocalized to form the
rather “soft” metal bonds. This, by the way, also allows
for the packaging of the effect of the core electrons into a
pseudo potential: this reduces the many-electron problem
to the treatment of the valence electrons only in a rea-
sonably smooth ionic background [9]. This again provides
a favorable situation for a mean-field treatment. The suc-
cess of the many calculations based on Density Functional
Theory (DFT) even in its simplest Local Density Approx-
imation (LDA) version indeed proves the reliability of the
mean-field approach.

The case of helium droplets is a bit more involved.
Indeed the applicability of a DFT approach was long de-
bated for such systems in view of the much stronger corre-
lations. However, it seems today that density functionals
can indeed be used in that case provided one introduces
a finite range in the construction [7,11]. Once taking that
step, the situation is even more favorable than in the case
of nuclei. The ab initio calculations for 3He matter have
achieved a high degree of reliability [12] and there ex-
ists experimental access to bulk 3He over a wide range of
pressures [13]. Both facts provide well-tested data as in-
put for a proper calibration of density functionals. There
exist even ab initio calculations for finite droplets which

serve as additional benchmark [14]. For a recent review
see also [15].

In the majority of practical cases the mean-field cal-
culations based on the one-body Hamiltonians presented
in table 2 are done at quantum level. Each particle (nu-
cleon, electron, helium atom) is attributed a one-particle
wavefunction φi(r), from which one deduces the single-
particle density matrix ρ̂(r, r′) and the local one-body
density %(r) = ρ̂(r, r) =

∑

i |φi(r)|2 (where the summa-
tion runs over all particles). The one-body wave functions
then follow an effective Schrödinger equation

i h̄
∂|ϕi〉
∂t

= h[%(r)]|ϕi〉 (1)

with an effective single-particle Hamiltonian h expressed
as a functional of the density ρ(r), as given in table 2 for
the various Fermi systems. This mean-field equation can
be recast in the equivalent matrix form

i h̄ρ̂ = [h, ρ̂]. (2)

There also exist semi-classical approximations to this
quantum scheme. They can be “formally” obtained by
transforming the density operator ρ̂ into a one-body phase
space distribution f(r,p, t), which becomes the basic in-
gredient, and the commutator into Poisson brackets:

ρ̂(r, r′) −→ f(r,p, t),
[., .] −→ {., .}. (3)

This leads to the Vlasov equation

∂f

∂t
= {h, f}. (4)

The one-body Hamiltonian has the same expression in
terms of the density %(r) as in the quantal form, but the
density is now computed from the phase space density as

%(r, t) =

∫

d3pf(r,p, t). (5)

This equation can then be extended to account for
dynamical correlations. Particle-particle scattering effects
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can indeed easily be included as a Markovian collision
term for the phase space distribution f . This has been
worked out in great detail in nuclear-physics applica-
tions [16] and it was also extended to the cluster case.
In both cases (nuclei, metal clusters) one ends up with
the VUU (Vlasov-Uehling-Uhlenbeck) equation

∂f

∂t
+

p

m

∂f

∂r
− ∂V

∂r

∂f

∂p
= IUU(r,p, t) (6)

with the collision term

IUU =

∫

d3p2dΩ

(2πh̄)3
dσ

dΩ
|v12|

·
{

f1f2

(

1− f3

2

)(

1− f4

2

)

−f3f4

(

1− f1

2

)(

1− f2

2

)}

, (7)

where v12 is the relative velocity of the colliding particles
1 and 2. The differential cross-section dσ/dΩ (depending
on the scattering angle Ω) is evaluated in the center-of-
mass frame of the two colliding particles. Indices 3 and
4 label the momenta of the two particles after an ele-
mentary collision and we use the standard abbreviation
fi = f(r,pi, t). The collision is supposed elastic (conserva-
tion of energy, of total momentum). Pauli-blocking factors
(1− fi/2)(1 − fj/2) play an important role here, as they
provide the necessary preservation of the Pauli principle
in the course of fermion collisions. In the ground state,
they block correctly all kinematically possible (and thus
classically possible) collisions. At high excitation energy
the phase space opens up and two-body collisions start
to populate it in the course of thermalization. The VUU
scheme was very much used in the case of heavy-ion colli-
sions in the Fermi energy domain. As we shall see below,
it should also be taken into account in the case of metal
clusters, for energetic processes.

4 From one field to the next

4.1 Status of knowledge

The three fields (nuclei, clusters, helium droplets) are by
no means at the same stage of developments. Nuclei have
been studied for almost a century while studies on free
metal clusters have only been started a few decades ago,
and even later for helium droplets, although the homoge-
neous phases of electrons (in bulk metal) or helium had
been studied much earlier. As a result the available ex-
pertise varies from one field to the next. We have tried to
summarize roughly the stages of achievement for each field
in table 3, grouping into theory versus experiment and
structure versus dynamics. Studies in nuclei cover each of
the four topics widely. The case of clusters is more mixed.
While structure properties start to be well known both
at theoretical and experimental levels, dynamics is still
in its infancy, especially when far from equilibrium. The-
oretical studies are here probably a bit more advanced
than experimental ones. The latter require the develop-
ment of very elaborate detectors with which the cluster

Table 3. Schematic status of studies for the three finite
fermion systems. The entry “no→ yes” indicates that research
is underway and results may show up soon. The entry “not yet”
means that calculations have not been done but are feasible in
principle. See text for details.

System Experiment Theory

Structure Dynamics Structure Dynamics

Nuclei yes yes yes yes

Clusters yes no → yes yes no → yes
3He no → yes no yes not yet
droplets

community is not fully familiar and which would become
unusually expensive in view of the elsewise rather eco-
nomical cluster experiments. Data for helium droplets are
even more sparse. In fact, there is very little known exper-
imentally. Even the minimum size of such droplets is not
fully ascertained experimentally, and it is admittedly very
hard to deal with these volatile and neutral objects. The
theory side is a bit better developed at structure level. Dy-
namical studies are conceivable from the theory side, but
there is not much effort in that direction because exper-
imental data will not appear all too soon. In the context
of this topical issue focusing on nuclear dynamics, there
are thus, presently, much stronger possible connexions be-
tween metal clusters and nuclei than with helium droplets.
In the following, we shall thus focus the discussion on dy-
namical examples as taken from metal clusters and not
further analyze the case of helium droplets.

4.2 Multiscale dynamics

It is interesting, as a starter, to compare nuclear and clus-
ter time scales. In order to make the actual comparison
more telling we use reduced units in terms of the Fermi-
gas characteristics of both systems, following the values
introduced above. Indeed, we define a basic time rs,0/vF

and energy scale εF, as built from the Wigner-Seitz radius
rs for clusters and from the parameter r0 of nuclear-radius
systematics (R ∼ r0A

1/3, with r0 ∼ 1.12 fm). For the sake
of simplicity, we restrict the analysis of the cluster case to
Na, thus taking for the Wigner-Seitz radius rs = 4a0. This
leads to rs/vF = 0.2 fs and εF = 3.2 eV. Indeed, electronic
time scales for other alkalines perfectly match the values
obtained in the case of Na. The ionic motion times scale
with the square root of the atom mass. In nuclei the ba-
sic time and energy scales read r0/vF = 3.3 fm/c and
εF = 40 MeV. We plot times as a function of temper-
ature. It should be noted that this is rather a measure
for the average excitation and does not necessarily imply
a full thermalization. The choice of temperature is here
practical and allows to overlook, to a large extent, size-
dependent effects.

With this system of reduced units we compare nuclear
and sodium time scales in fig. 2. The comparison con-
cerns various relevant times: the cluster plasmon period
(equivalent to the giant dipole resonance in nuclei), ionic
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Fig. 2. Comparison of relevant times scales in nuclei and sodium clusters. Reduced units are used in both cases to allow
a relevant comparison (see text for details). Various times plotted are: plasmon period in clusters (equivalent to giant dipole
resonance in nuclei), ionic time scale (comparable to nuclear fission/fragmentation), electron evaporation time (equivalent to
neutron evaporation time), electron-electron (or nucleon-nucleon) collision time scale.

time scale (comparable to nuclear fission/fragmentation),
electron (or neutron) evaporation time, electron-electron
(or nucleon-nucleon) time scale. This comparison calls for
several comments. At first glance one can note a relative
similarity between electronic and nuclear time scales, in
particular comparable dependences (or independence) of
times on temperature. But details differ. Indeed the hi-
erarchy of time scales is pretty different between Na and
nuclei. Grossly speaking, nuclear time scales look more
similar to each other than cluster ones. This means that
there exists a natural hierarchy of well-separated time
scales in clusters, while nuclear times tend to be much
more mixed up. This has important implications in par-
ticular from the theoretical point of view. The lack of a
clear time hierarchy in nuclear dynamics makes a clean
adiabatic decoupling of slow degrees of freedom difficult.
The simple Born-Oppenheimer treatment of slow degrees
of freedom has to be replaced by the much more involved
generator-coordinate-method [17]. In cluster physics the
huge mass difference between electron and ionic masses
makes electron time scales an order of magnitude smaller
than ionic ones. Electrons are thus more responsive than
ions and need to be accounted for in priority in cluster
dynamics. One should nevertheless note that the separa-
tion of electronic and ionic time scales tends to shrink in
strongly non-linear situations where huge electromagnetic
fields can be generated. Differences between nuclear and
cluster hierarchies of time scales do not only reduce to
the hierarchies by themselves but also to the times with
respect to each other. One should in particular note the
relative importance of electron-electron interactions. They
become dominant for much higher temperatures in clus-
ters than in nuclei, which means that mean-field methods
can probably be used at much higher excitation energies
in clusters than in nuclei. This is a welcome feature in

view of the theoretical difficulties the inclusion of dynam-
ical correlations raises. In a similar way, thermal emission
comes into play much earlier in nuclei than in clusters.
This again reflects the stronger interference amongst nu-
clear time scales as compared to cluster ones.

5 Electron dynamics in metal clusters

5.1 Electron emission from irradiated clusters

Experimental observation requires that some objects reach
a counter, preferably charged particles. A major tool is
here to keep a protocol of emitted electrons. Figure 3
illustrates the various observables which can be drawn
from electron emission. The left upper panel symbolizes
the photo-ionization cross-section σ(ω) (where ω is the
laser frequency) which is a good approximation to the to-
tal photo-absorption cross-section and which can be mea-
sured easily by tracking the net electron yield as a function
of frequency. This quantity is obviously of inclusive nature
and thus does not provide very detailed information, in
particular at the side of individual electrons. More infor-
mation can be extracted when measuring the distribution
of the kinetic energies from the emitted electrons. This is
called photo-electron spectroscopy (PES) and gives access
to differential cross-sections dσ/dE (where E is the elec-
tron kinetic energy). The right panels characterize PES
briefly, in terms of mechanism (lower panel) and of typ-
ical observable (upper panel). The energy is drawn hori-
zontally in both cases. The zero point is clearly indicated.
The lower part shows three vertical lines. The two solid
lines indicate the (negative) energies of occupied bound
electron states (in the simple case of a small cluster here)
and the dashed line stands for the continuum threshold.
The horizontal arrow indicates a photon. It transfers a
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Fig. 3. Schematic view of observables related to electron emis-
sion from metal clusters. Left lower panel: irradiated cluster
with emission preferentially (to some extent) along the laser
polarization; a simple detector is also represented, its width
symbolising its capability to measure electron kinetic energies;
left upper panel: total ionization cross-section σ(ω) as a func-
tion of laser frequency ω; right panels: principle of photoelec-
tron spectroscopy (upper panel: typical data, differential cross-
section dσ/dE; lower panel: mechanism).

well-defined amount of energy. Bound-state energy plus
photon energy(ies) sum up to the kinetic energy finally ob-
served. The photo-electron spectrum (upper panel) thus
shows distinct peaks at those energies. Having these peaks
and knowing the photon frequency allows to conclude on
the underlying single-electron states. Thus far the simple
story in the low-intensity domain. The situation becomes
more involved in a more energetic domain. The case of
PES in this energy domain will be discussed in sect. 5.2.

5.2 Photoelectron spectroscopy

Figure 4 shows the PES of Na+
9 for two different laser in-

tensities around the transition to the high field regime.
The lower intensity still resolves the detailed single-
electron states in repeated sequences (see also the discus-
sion around fig. 6). A moderate enhancement of the laser
intensity by an order of magnitude suffices to wipe out
the structures. A more or less smooth curve then emerges
which fits nicely to an exponential decrease. The smooth
pattern persists, of course, for even larger intensities. The
slope decreases with increasing intensity. It is interesting,
then, to analyze the origin of these smooth patterns, a
question which is still a matter of debate. Indeed one could
interpret this exponential decrease as a signal of thermal-
ization of the electron cloud. However, this is not applica-
ble to short laser pulses during which thermalization can
hardly play a dominant role. Without arguing in terms of
thermalization one can also note that, together with the
dramatic changes in the pattern of the PES, we see an
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Fig. 4. Photoelectron differential cross-section (arbitrary
units) of Na+9 at two intensities as indicated. A short laser
pulse with FWHM = 25 fs was used.

equally dramatic increase in the ionization. This large in-
crease in net charge at the cluster site has a side-effect on
binding. Due to the growing Coulomb force, the mean field
acquires extra binding, which globally down-shifts elec-
tronic single-particle energies by the same amount. This
happens as a dynamic process. Thus all levels are smeared
which eventually generates the smooth pattern seen for
the higher intensities. It can be shown that this process
does also deliver an exponential decrease of the PES [18].
A better indicator of thermalization is provided by the
(more detailed) analysis of electron emission in terms of
the angular distribution of the emitted electrons. This will
be discussed in sect. 5.3.

The PES change pattern when going to larger sys-
tems. Indeed, the larger the system, the denser the density
of electronic states, which inhibits a detailed resolution
of separate single-electron states, whatever the excitation
regime. At best, one can expect step-like structures indi-
cating bands of occupied states, as was observed in the
case of C60 for short, moderate pulses [19] and for large
Ag clusters on a substrate [20]. More recently were also
published measurements on Na+

93 from [21], which show
smooth trends throughout and are interpreted as thermal
emission. Let us thus consider here Na+

93 as an example of
a larger cluster. We have computed PES for Na+

93 for a va-
riety of laser intensities (but fixed photon frequency and
pulse width). At low intensity we observe step-like pat-
terns related to a dense block of occupied states. And at
larger laser intensity PES exhibit smooth patterns with
nearly exponential decrease. A simple characteristics of
the PES is thus provided by the slope of the exponential
decrease. The criterion is unambiguous at large intensity
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Fig. 5. Global properties of emission from Na+93, total number
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ωphoton = 3.1 eV and pulse length FWHM = 200 fs. Results are
drawn versus intensity (as log10(I) with I in units of W/cm2).
Results from TDLDA-MD are compared with the experimental
results of [21] using comparable experimental conditions.

but requires some caution at lower intensities because of
the step-like pattern. The “staircases” have in fact all the
same step height (on logarithmic scale) such that their
envelope is a straight line to which it is easy to associate
an exponential decrease. We can thus extend the simple
slope characterization to any laser intensity. This allows a
direct comparison to experimental data.

The experiments [21] were done for rather long pulses
with a FWHM of about 200 fs. One can expect to see pat-
terns related to electron-electron collisions, beyond mean
field. Nonetheless, it is interesting to compare TDLDA
(mean-field) results with those measurements concerning
global properties such as net ionization and the slope of
the PES. The results are compared with data in fig. 5.
Note that for such long pulses one has also to account for
ionic motion which sizably alters the sequence of electronic
levels and thus the PES. This effect was of course taken
into account in the calculations presented in fig. 5. The
comparison shows that the calculations reproduce the net
ionization (number of emitted electrons Nesc within a fac-
tor of two, as well as the growth with laser intensity. This
has to be considered as a good agreement in view of the
fact that ionization also sensitively depends on the pulse
shape. Calculations use here a cosine2 pulse profile while
the experimental profile is not so well known, probably
having longer tails. The results for the slopes (lower part
of fig. 5) are also quite encouraging in size and in trend.
Similar results were reported in [22] in the framework of a
Vlasov-LDA approach. The remaining differences between
the calculations and the experimental results are presum-
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Fig. 6. Schematic view of detailed characteristics of emit-
ted electrons, in particular in the non-linear domain. The left
panels of the figure are similar to the ones of fig. 3 but for
the detectors (left lower panel) where we have schematized a
series of small detectors to access angular distributions of emit-
ted electrons (and possibly even kinetic energies at the same
time). Right upper panel: PES in the multiphoton regime with
copies of the series of single-particle peaks separated by the
laser frequency, yielding the differential cross-section dσ/dE;
Right lower panel: angular distribution of emitted electrons
with a more intense yield along the laser polarization axis,
yielding the differential cross-section dσ/dΩ and possibly the
double differential cross-section d2σ/dΩdE.

ably to be attributed to the lack of account of electron-
electron collisions (overlooking details of laser pulse shape,
as mentioned above or even cluster temperature control).

5.3 Angular distributions

Besides the kinetic energy, one can also measure the an-
gular distribution of emitted electrons, a quantity which
also carries a lot of interesting information. This gives ac-
cess to the differential cross-section dσ/dΩ (where Ω is
the solid angle). The principle of such a measurement is
presented schematically in fig. 6. In the case of laser irra-
diation one expects electrons to be emitted preferentially,
at least to some extent, along the laser polarization axis.
As we shall see below, the amount of anisotropy somewhat
depends on the experimental conditions (characteristics of
laser pulse in particular). One may even measure simul-
taneously both angular distributions and kinetic energies
of emitted electrons (see the left panel of fig. 7 for an ex-
ample). This thus gives access to the double differential
cross-section d2σ/dΩdE. Note also that in fig. 6 the PES
panel (upper right part) has been modified, with respect
to fig. 3, in order to describe the multiphoton regime, with
successive copies of the single-electron level sequence.
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Fig. 7. Left panel: 2D equi-density plot of kinetic energy spectra and angular distribution from a W−
4 cluster anion after

irradiation with a laser of frequency 4 eV. The emission angle is mapped in terms of polar coordinates while the kinetic energies
grow with radial distance from the center of the plot. The gray scale indicates flux: high emission shines white. The laser
polarization is along the vertical axis [23]. Right panel: angular distribution of emitted electrons computed in quantum TDLDA
(full line), semi-classical Vlasov-LDA (short-dashed line), and VUU with collision term (long-dashed line). The test case is Na+41
with ionic structure. Laser parameters are indicated in the figures. The angle is defined relative to the laser polarization axis.

There are only few available experimental data on an-
gular distributions. An example is shown in fig. 7. The
left panel exhibits a combined kinetic energy and angular-
distribution measurement, after irradiation of a W−

4 clus-
ter anion by a low-intensity ns laser at a frequency of
4 eV. The anion (negatively charged cluster) has a low
ionization threshold around 1.6 eV, much lower than the
monomer evaporation threshold (larger than 7 eV). As a
result thermal ionization is favored over monomer evapo-
ration in this case. The competition remains, though, be-
tween direct (in particular, one-photon processes in such
an anion) and thermal electron emission. The extremely
long laser pulse (as compared to typical electronic or even
ionic times) gives thermalization through electron-electron
collisions good chances to be activated and efficient. One
thus expects a significant contribution from thermal emis-
sion. This is indeed what can be seen from the figure,
where light grey indicates large emission and dark grey
low emission. The broad central spot can be associated
with thermal (isotropic) emission and the kinetic energy
spectra (not directly visible in the figure) indeed confirm
the correct trend ∝ √εkin exp (−εkin/T ) [23]. But at larger
kinetic energies (which correspond in this representation
to larger radial distances) one can also spot a non-isotropic
component in the emission, directed along the laser polar-
ization axis. This is clearly a signal from a direct-emission
process which competes with thermal (isotropic) emission.

A full description of such processes should thus account
for electron-electron collisions in order to properly access
the isotropic component of the electronic emission. This
would allow to cover both regimes, direct emission as well
as thermal evaporation. A way to include such effects in
the TDLDA approach is to rely on the semi-classical ver-
sion of the theory, properly extended by a collision term
to account for electron-electron collisions [24,25], in the
spirit of similar extensions worked out several years ago in
nuclear physics [16]. The semi-classical approach of course

requires sufficiently high excitation. But, as in the nuclear
context, that is the typical situation for thermalization to
play a role at all. The right panel of fig. 7 shows an example
of angular distributions obtained from such a VUU calcu-
lation, and compared to pure mean-field results (a quan-
tum TDLDA one and a semi-classical Vlasov-LDA one).
Note that at variance with the left panel of fig. 7 the distri-
bution has been integrated over final kinetic energy. First,
we see that TDLDA and Vlasov nicely agree in that exci-
tation regime. Both show an emission clearly peaked along
the laser polarization, a behavior characteristic of direct
emission. But the electron-electron collisions in VUU also
leads to a sizeable isotropic component. Not surprisingly,
the delayed emission of the thermalized electrons has lost
memory of the original polarization axis and subsequently
one obtains a much smoother angular distribution, as can
be seen on the VUU curve of the right panel of fig. 7. The
distribution is nevertheless not perfectly isotropic: there
remains a sizeable fraction of directly emitted electrons
for the chosen conditions. But the branching between di-
rect and thermal emission in fact sensitively depends on
the details of the excitation. Systematic studies of these
influences could thus deliver valuable information on the
underlying dynamics. But these studies have yet to be
worked out, both theoretically and experimentally, in par-
ticular in the combined analysis of kinetic energies and
angular distribution as in the case presented in the left
panel of fig. 7.

6 Some conclusions and perspectives

Fermi liquids are a generic state of matter denoted by a
more or less well-defined saturation point and a long mean
free path for particles with low momenta. Wigner-Seitz ra-
dius (related to saturation density) and Fermi energy set
natural units for length and energy scales. Finite drops
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of Fermi liquid show several interesting features as, e.g.,
pronounced shell effects and resonance excitations. Vari-
ous different materials look very similar when expressed
in the natural units of the material. We have exemplified
that here for the three systems: nuclei, metal clusters and
3He droplets. There are, of course, also many differences
between these systems. These concern mostly availability
and experimental access. For example, nuclei are limited
in size, but metal clusters can be grown arbitrarily large
which allows to study the approach to bulk matter and
the evolution of shell effects for large systems. Further-
more, clusters are responsive to laser light which opens
up an enormously rich field of dynamical studies yet to
come. As another example, 3He droplets have extremely
soft surfaces which requires an extension of DFT to incor-
porate effective interactions with finite range. This shows
that the differences are highly welcome as they deliver
complementing information for a common understanding
of finite fermion systems. It is to be remarked that nuclei
are a particularly demanding species in several respects.
The nuclear many-body problem (ab initio models) has
not yet fully converged and similarly the nuclear DFT,
although extremely successful in sorting the basic nuclear
properties, is still under development. On the other hand,
nuclei are probably the best-studied objects from the ex-
perimental side. There exist plenty of data in any dynami-
cal regime. Altogether, a combined analysis of the various
systems (nuclei, metal clusters, He droplets) will mutually
boost the understanding of all systems.

Pursuing the comparative analysis a bit deeper it
seems clear, in particular in relation with the examples
shown above, that there obviously exist rather clear di-
rections of fruitful enrichment, especially in the domain
of dynamics. Indeed, nuclear physics, and heavy-ion col-
lisions, provide remarkable examples of detailed studies
of complex dynamical processes requiring sophisticated
multi parameter detectors and elaborate many-body the-
ories beyond the mere effective mean field. It seems to us
that the field of metal clusters should easily benefit from
this knowhow, as it has already benefited in the case of
low-energy dynamics or in some structure properties. We
have outlined, in particular, the importance of accessing
as detailed as possible information on emitted electrons
from irradiated clusters. And it seems that all the expe-
rience gathered around multidetectors in heavy-ion colli-
sions could here be very useful. The essential step to pass
from inclusive to exclusive measurements has been exten-
sively explored in these nuclear studies and the experience
gained here appears quite valuable for other domains of
physics.

This direction towards exclusive measurements is how-
ever not the single direction to be explored. Fundamental
cross disciplinary questions also arise in other areas at
the interface between nuclear and cluster physics. Let us
in particular cite the question of “phase transitions” in
finite systems, a problem extensively studied in relation
to nuclear fragmentation and to melting in metal clus-
ters. This particular question is addressed elsewhere in
this topical issue. We have thus deliberately avoided this

point. From a more formal point of view, one should also
mention the basic questions raised by density functional
theory in various systems (electronic, nuclear as well as
helium), especially in relation, again, to dynamical ques-
tions. The development of the so-called Time-Dependent
Density Functional Theory (TDDFT) still remains a mat-
ter of intense activity and debates. The nuclear-physics
approach, for example in terms of truncations of hierar-
chies of density matrices, brings here an interesting view-
point, to be merged with the more “bottom-up” methods
inherited from standard DFT methods. Finally, we would
like again to mention, in continuity to these questions on
DFT and TDDFT, the growing importance of dynamical
correlations in more and more energetic processes. Again
the nuclear-physics experience, for example in terms of
kinetic theory, provides valuable assets for other fields of
physics and this should be valorized.
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Appendix A.

We list in the following a few textbooks used in the prepa-
ration of this manuscript, as well as the proceedings of a
few major conferences on cluster and helium physics. This
list is by no means exhaustive.

a) Cluster physics
– S. Sugano, Microclusters (Springer, Berlin, 1987);
– H. Haberland, Clusters of Atoms and Molecules
1 —Theory, Experiment, and Clusters of Atoms,
Springer Series in Chemical Physics, Vol. 52,
(Springer, Berlin, 1994);

– H. Haberland, Clusters of Atoms and Molecules
2 —Solvation and Chemistry of Free Clusters,
and Embedded, Supported and Compressed Clus-
ters, Springer Series in Chemical Physics, Vol. 56,
(Springer, Berlin, 1994);

– W. Ekardt, Metal Clusters (Wiley, New York,
1999);

– J. Jellinek, Theory of Atomic and Molecular Clus-
ters (Springer, Berlin, 1999);

– P.-G. Reinhard, E. Suraud, Introduction to Cluster
Dynamics (Wiley-VCH, Berlin, 2003);

– Proceedings of the ISSPIC Conferences of the past
decade:
ISSPIC 7: Surf. Rev. Lett. 3 (1996);
ISSPIC 8: Z. Phys. D 40 (1997);
ISSPIC 9: Eur. Phys. J. D 9 (1999);
ISSPIC 10: Eur. Phys. J. D 16 (2001)
ISSPIC 11: Eur. Phys. J. D 24 (2003);
ISSPIC 12: Eur. Phys. J. D 34 (2005).

b) Helium clusters

– E.R. Dobbs, Helium Three (Oxford University
Press, New York, 2000);
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– K.B. Whaley (Editor), J. Chem. Phys. 115 (2001)
(special issue);

– E. Krotscheck, J. Navarro (Editors), Microscopic
Approaches to Quantum Liquids in Confined Ge-
ometries (World Scientific, Singapore, 2002).
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